
CS 4100: Introduction to AI

Wayne Snyder
Northeastern University

Lecture 7: Problem Solving with Search; Uninformed Search

 



Problem Solving with Uninformed Search
Today's Lecture on Uninformed Search:

• Review of basic notions: trees, graphs, recursive tree traversals

• Non-recursive tree traversals using stacks and queues; depth-first vs 
breadth-first vs best-first (a glimpse at heuristic search)

• Iterative deepening

• Graph search (same ideas but with graphs!)



3

Binary Trees

Binary Trees are an inherently recursive data structure and often manipulated by recursive 
algorithms:
Recursive Definition:

A Binary Tree is either
o Null  (empty tree); or
o A node containing data, with pointers left and right to two Binary Trees

class Node {
int item;
Node left;
Node right;

}

Note: Code in this 
lecture is in Java!

0



4

Binary Trees

Some basic definitions:

o The root is the node at the top of the tree.
o Trees under a node are called subtrees of that node;
o The size of a tree is the number of nodes in it;
o If A points to B, then B is called the child of A;
o The parent of a node is the (unique) node which points to it (the root has no parent);
o A node is a leaf node if it has no children.  

B C

ED

F G

A

Right Subtree of A

root

Left child
of A

Root is A

Size is 7

C is parent of D

Leaf nodes:  B, F, G, E

19 9



5

Binary Trees

Some basic definitions:

o A path is a sequence of nodes connected by pointers (from parent to child); 
o The length of the path is the number of links; 
o If there is a path from A to B of length at least one, then A is an ancestor of B and B is a 

descendant of A. 
o The depth of a node in a tree is the number of links on the path from the root; 
o The height of a tree is the maximum depth among any of its nodes (or: the length of the 

longest path). 
o Level K in a tree is all the nodes of depth K.

B C

ED

F G

Path from A to F in red, 
of length 3

D is descendant of A

C is ancestor of G

Depth of D = 2

Height of tree = 3

A

Level 2



State Space Search

Let’s question one of our basic assumptions: 

DO NODES In TREES and HAVE TO EXIST?

Well.... not really....many computations follow a “tree structure” without 
having to actually construct trees of explicit nodes…. 

Binary Search in an array:                            Search in a BST:

Of course, we DO have a data structure 

to search, it just isn’t exactly a tree….

Are data structures necessary for search?

LIL
Bshot
5 I

at



State Space Search

Here’s another example of binary search in a “tree structure” …. 
without any data structure to search…..

Suppose we want to find the inverse of a function f(n) which we know 
to be non-decreasing (monotonic); we can search the “tree” of 
possibilities without constructing a tree:

int inverse(double r, double n, double lo, double hi) {
if( abs(n*Math.log2(n) – r) < 0.01)

return n; 
double mid = (lo + hi)/2; 
if(f(mid) ≤ r) 

return inverse(r, mid, lo, mid); 
else 

return inverse(r, mid, mid, hi); 
}

double f(double x) {
return x *Math.log2(x);

}

// called like this:

inverse(5, 5, 0, 5)

2.5

3.751.25

5

1.875.625 4.3753.125

11.6

3.3

5.137

7.15

FAY Like E

Me
Fans
f 5

a



State Space Search

DO NODES In TREES and HAVE TO EXIST?  NO!

The parameters to the function call are in effect “nodes” in the 
computation, and are not explicit nodes linked by explicit pointers; but 
they are essentially the same. They are created by need as the 
computation proceeds. 

NOTE: The tree is infinite!

2.5

3.75

5

3.125

inverse(5,5,0,5)

inverse(5,2.5,2.5,5)

inverse(5,3.75,2.5,3.75)

inverse(5,3.125,3.125,3.75)



The Eight Queens Problems: Place 8 queens on a chess board so that no one queen can attack 
another:

State Space Search: Tree Examples

876



10

Tree Traversals

Searching a (finite) tree is known as a tree traversal. This can be done recursively:

void traverse(Node t) {
if( t != null ) {       // Base case is implicit

visit(t);            // V
traverse(t.left);    // L
traverse(t.right);   // R

}
}

void visit(Node t) {
System.out.print(t.key + “   “);

}

II

Is
gym

FB A

J

GT H BACKTRACKING

a



11

Non-Recursive Traversals

We can traverse a tree without recursion if we use an auxiliary data structure such as a stack 
or queue to keep track of the path traversed.

Let’s try using a stack first:

void DFS(Node t) {
Stack<Node> S = new Stack<Node>();
S.push(t);
while( !S.isEmpty() ) {

Node p = S.pop(); 
visit( p );
if( p.right!= null )

S.push(p.right);
if( p.left!= null )

S.push(p.left);

}
}

EE



12

Non-Recursive Traversals

What happens if we use a Queue instead of a stack?

void BFS(Node t) {
Queue<Node> Q = new Queue<Node>();
Q.enqueue(t);
while( !Q.isEmpty() ) {

Node p = Q.dequeue(); 
visit( p );
if( p.left != null )

Q.enqueue(p.left);
if( p.right != null )

Q.enqueue(p.right);

}

}                    

This is called a Breadth-First Search (BSF) or Level-Order Traversal. 

FIDA GEBEL

ÉIE



13

Non-Recursive Traversals

In general, we can use any collection that supports adding and removing elements!
Suppose we have an arbitrary collection which stores the nodes in some order:

void Search(Node t) {
Collection<Node> C = new Collection <Node>();
C.add(t);
while( !C.isEmpty() ) {

Node p = C.removeNext(); 
visit( p );
if( p.left != null )

C.add(p.left);
if( p.right != null )

C.add(p.right);             
}

}

As long as every node eventually pops out of the Collection, this will visit all the nodes;
for example, each node could have a priority measure that tells us how it important it is to search it 
asap.         (This will be the basis for heuristic search in the next lecture.)

I
d

I

I F
B
D
E
A



14

Searching a large or infinite tree

Traversals can't literally be done on infinite (or even extremely large) trees, but the same algorithms 
are involved in searching for a particular node (a goal node).  Recursive algorithms are possible, but 
generally not useful, since they get "stuck" on an infinite path that may not have a goal node!

void DFS(Node t) {
if( t != null ) {

visit(t); 
DFS(t.left); 
DFS(t.right);   

}
}

void visit(Node t) {
# Check if this is a goal node!

}

j

am

I

A

COMPLETE
FINNS A a

GOAL IF ONE EXISTS



15

Searching a large or infinite tree

Iterative deepening is a cross between DFS and BFS which has the advantages of both:
• It is complete (will always find a goal node if one exists); and
• Only has to store one path at a time, so is memory-efficient. 

void IterativeDeepening(Node t, stride) {
for( limit = stride; true; limit += stride) {

ID(t, 0, limit);
} 

}
void ID(Node t, depth, limit) {

if( t != null and depth < limit) {
visit(t); 
ID(t.left, depth+1, limit); 
ID(t.right, depth+1, limit);   

}
}

t.io

8



16

Searching an AND/OR Tree

An AND/OR tree is a representation of a search space in which have two kinds of nodes:
• For AND nodes, you must follow the links of ALL children;
• For OR nodes, you only must follow SOME link. 
This only makes sense for finite trees, where backtracking occurs: when backtracking, you must  
follow all links from AND nodes, but only follow OR nodes if no goal is found. 

AND/OR trees arise, for example, when there are multiple goals (as in Prolog) or in adversarial 
search for games. 

At

O
oneAffigI



Graphs: Basic Definitions

Graphs are the most basic model of 
collections of information, generalizing trees 
to allow arbitrary links between nodes. 

A Directed Graph (or Digraph) is:

o A set V of Vertices (or: Nodes) containing 
(possibly): 

o A Label (1, 2, … A, B, … etc.)

o Data fields (boolean flags, 
counters, etc. )

o A set E of Edges (links) connecting 
vertices; edges may have labels or data 
(e.g., weight or cost) associated with 
them. 

E is usually expressed as a relation on V, 
i.e., E consists of pairs of vertices:

(source, target)

E is a subset of  V x V  (Cartesian Product of 
V)

A

C

B

D

V = { A, B, C, D }

E = { (A,B), (A, C), (B,C), (D,B), (D,C) }

Note: Like a tree, but
o Any vertex can be connected to any 

other vertex;
o There is no root.

t



Directed Graphs: Basic Definitions

A

C

B

D

V = { A, B, C, D, E, F }

E = { (A,B), (A, C), (B,C), (D,B), (D,C), (E,F) }

E

F

Basic Notions of Digraphs:
Vertex    (Vertex set V); Edge     (Edge set E)

The out-degree of a vertex is the number of 
edges leaving it; the in-degree is the number 
arriving at it. 

A path is a sequence of vertices

( v1, v2, ..., vn ) where

A set of vertices is reachable from v if there 
is a path from v to every member of the set. 
The set of nodes reachable from v is always 
a tree. 

A cycle (or loop) is a path that begins and 
ends on the same vertex.  

B C A B

vi vi+1

Graph is 
cyclic!

j
É
ant

A Croc C



Graphs: Basic Definitions

An Undirected Graph has the additional feature that all edges are two way, i.e., the relation E 
is symmetric:

(A, B)  is in E iff (B,A) is in E

Edges do NOT have a direction (e.g., two-way streets). 

“Graph” can mean either, but generally is assumed to be undirected. 

There are various ways of drawing an undirected graph:

i

O



Digraphs: Search

Depth-First Search in Digraph using recursion:

boolean visited; 

searchGraph(V, E) {
foreach( v in V )               // initialize all vertices

v.visited = false; 
foreach( v in V ) 

if(!v.visited)
DFS(v);

}

DFS( Vertex v )  {
if(!v.visited) {

visit(v); 
v.visited = true;
foreach( u in Adjacent(v) ) {

DFS( u ); 
}

}
}

Digraph  G

A

C

B

D

F

G

E

MAIN DIFFERENCE W

TREE SEARCH IS TO
NI
REFILEDAE VISITED 93

5

a

p

fifty

three
i

y
so

E É ABCD GF



Digraphs: Search

Depth-First Search in Digraph using an explicit stack:

boolean visited; 
searchDigraph(V, E) {

foreach( v in V )               // initialize all vertices
v.visited = false; 

foreach( v in V ) 
if(!v.visited)

DFS(v);
}

DFS( Vertex v )  {
Stack S = new Stack(); 
S.push(v); 
while( ! S.isempty() ) {

Vertex u = S.pop(); 
if(!u.visited) {

visit(u);
u.visited = true;
foreach( w in Adjacent(u) ) 

if(!w.visited)
S.push(w);    

}
}

}

Digraph  G

A

C

B

D

F

G

E

so

AT



Digraphs: Search

Breadth-First Search in Digraph:

boolean visited; 
searchDigraph(V, E) {

foreach( v in V )               // initialize all vertices
v.visited = false; 

foreach( v in V ) 
if(!v.visited)

BFS(v);
}

BFS( Vertex v )  {
Queue S = new Queue(); 
S.enqueue(v); 
while( ! S.isempty() ) {

Vertex u = S.dequeue(); 
if(!u.visited) {

visit(u);
u.visited = true;
foreach( w in Adjacent(u) ) 

if(!w.visited)
S.enqueue(w);    

}
}

}

Digraph  G

A

C

B

D

F

G

E

2 M
A

3

of FEEEGA



Digraphs: Search

Best-First Search in Digraph:

boolean visited; 
searchDigraph(V, E) {

foreach( v in V )               // initialize all vertices
v.visited = false; 

foreach( v in V ) 
if(!v.visited)

BFS(v);
}

BFS( Vertex v )  {
PriorityQueue S = new PriorityQueue(); 
S.enqueue(v); 
while( ! S.isempty() ) {

Vertex u = S.dequeue(); 
if(!u.visited) {

visit(u);
u.visited = true;
foreach( w in Adjacent(u) ) 

if(!w.visited)
S.enqueue(w);    

}
}

}

Digraph  G

A

C

B

D

F

G

E

3

i

IT

a
R

z

E am
a



State Space Search: Graph Examples

State Space Search is a situation where

(imaginary) nodes  ==  values of parameters in method calls  == states of computation

You are searching among the various states

of the problem, and you “create the children” 

of a node “by need” as you call a method

recursively.

Many puzzles and games can be solved this way…..



Missionaries and Cannibals:  Three missionaries and three cannibals are on the left bank of 
a river and have a boat in which they must cross to the right side, but the boat only holds 
two people and can not cross the river by itself. Furthermore, if the number of cannibals on 
either side of the bank is every greater than the number of missionaries, the cannibals will 
overwhelm and eat the missionaries. How can they all get to the other side without anyone 
spoiling his dinner?

State Space Search: Graph Examples



If we collapse the duplicates in the tree down into a graph (nodes and links which can point to anything, even 
make cycles among links),  then:

Each node encodes the current STATE of the problem, and contains the number of missionaries and 
cannibals on each side: 

int[] S = { 3,3,0,0 };      // 3M, 3C on left, 0M, 0C on right

The edges in the graph (it is undirected) are the ways that the boat can go to the other side and change the 
state of the problem. 
You can search for the solution by doing traversal without actually constructing nodes:

State Space Search: Graph Examples

293,1,0,2

ftp

ML CL MR CR



The Eight Puzzle: Slide numbered tiles until they are in order:

State Space Search: Graph Examples

a as.ae
f
É

Lauri t.SI

0



É K

Sos.EC dKBfFEEB
FB SO D B D A B c

gas ELM
e para

d 13433 axHMzEEII

KBXIAn.BKBO 433,9 B

A B AB
BSC 2B C

A SEA



WM BM
WM
BM

m

CWMXBMUCumnp.MX
mm

aeQ.ie
IT BT Wxi eor.E

BM BT

InÉ Sos

teemed


